Table of Contents

What Is .NET









What Is Visual Studio








.NET framework







             
.NET My Services and Scope of .NET






      ASP .NET









What Is .NET

It is a platform to build various applications e.g. windows application ,console  applications, asp.net web application .It is a combination of various languages but .NET whole is not any language.

Technologies under .NET

.NET Framework

Visual Studio .NET

.NET Enterprise services

.NET My Services

Features of .NET

>Platform independent.

>Portable services.

>Provide facilities to work on various applications using different languages.

>Easy platform for designing.
>GUI based.
Visual basic Projects
Visual Basic .NET 
Visual Basic .NET provides the easiest, most productive language and tool for rapidly building Windows and Web applications. Visual Basic .NET comes with enhanced visual designers, increased application performance, and a powerful integrated development environment (IDE). It also supports creation of applications for wireless, Internet-enabled hand-held devices. The following are the features of Visual Basic .NET with .NET Framework 1.0 and Visual Basic .NET 2003 with .NET Framework 1.1. This also answers why should I use Visual Basic .NET, what can I do with it? 

Powerful Windows-based Applications 

Visual Basic .NET comes with features such as a powerful new forms designer, an in-place menu editor, and automatic control anchoring and docking. Visual Basic .NET delivers new productivity features for building more robust applications easily and quickly. With an improved integrated development environment (IDE) and a significantly reduced startup time, Visual Basic .NET offers fast, automatic formatting of code as you type, improved IntelliSense, an enhanced object browser and XML designer, and much more. 

Building Web-based Applications 

With Visual Basic .NET we can create Web applications using the shared Web Forms Designer and the familiar “drag and drop” feature. You can double-click and write code to respond to events. Visual Basic .NET 2003 comes with an enhanced HTML Editor for working with complex Web pages. We can also use IntelliSense technology and tag completion, or choose the WYSIWYG editor for visual authoring of interactive Web applications. 

Simplified Deployment 

With Visual Basic .NET we can build applications more rapidly and deploy and maintain them with efficiency. Visual Basic .NET 2003 and .NET Framework 1.1 makes “DLL Hell” a thing of the past. Side-by-side versioning enables multiple versions of the same component to live safely on the same machine so that applications can use a specific version of a component. XCOPY-deployment and Web auto-download of Windows-based applications combine the simplicity of Web page deployment and maintenance with the power of rich, responsive Windows-based applications. 

Powerful, Flexible, Simplified Data Access 

You can tackle any data access scenario easily with ADO.NET and ADO data access. The flexibility of ADO.NET enables data binding to any database, as well as classes, collections, and arrays, and provides true XML representation of data. Seamless access to ADO enables simple data access for connected data binding scenarios. Using ADO.NET, Visual Basic .NET can gain high-speed access to MS SQL Server, Oracle, DB2, Microsoft Access, and more. 

Improved Coding 

You can code faster and more effectively. A multitude of enhancements to the code editor, including enhanced IntelliSense, smart listing of code for greater readability and a background compiler for real-time notification of syntax errors transforms into a rapid application development (RAD) coding machine. 

Direct Access to the Platform 

Visual Basic developers can have full access to the capabilities available in .NET Framework 1.1. Developers can easily program system services including the event log, performance counters and file system. The new Windows Service project template enables to build real Microsoft Windows NT Services. Programming against Windows Services and creating new Windows Services is not available in Visual Basic .NET Standard, it requires Visual Studio 2003 Professional, or higher. 

Full Object-Oriented Constructs 

You can create reusable, enterprise-class code using full object-oriented constructs. Language features include full implementation inheritance, encapsulation, and polymorphism. Structured exception handling provides a global error handler and eliminates spaghetti code. 

XML Web Services 

XML Web services enable you to call components running on any platform using open Internet protocols. Working with XML Web services is easier where enhancements simplify the discovery and consumption of XML Web services that are located within any firewall. XML Web services can be built as easily as you would build any class in Visual Basic 6.0. The XML Web service project template builds all underlying Web service infrastructure. 

Mobile Applications 

Visual Basic .NET 2003 and the .NET Framework 1.1 offer integrated support for developing mobile Web applications for more than 200 Internet-enabled mobile devices. These new features give developers a single, mobile Web interface and programming model to support a broad range of Web devices, including WML 1.1 for WAP—enabled cellular phones, compact HTML (cHTML) for i-Mode phones, and HTML for Pocket PC, handheld devices, and pagers. Please note, Pocket PC programming is not available in Visual Basic .NET Standard, it requires Visual Studio 2003 Professional, or higher. 

COM Interoperability 

You can maintain your existing code without the need to recode. COM interoperability enables you to leverage your existing code assets and offers seamless bi-directional communication between Visual Basic 6.0 and Visual Basic .NET applications. 

Reuse Existing Investments 

You can reuse all your existing ActiveX Controls. Windows Forms in Visual Basic .NET 2003 provide a robust container for existing ActiveX controls. In addition, full support for existing ADO code and data binding enable a smooth transition to Visual Basic .NET 2003. 

Upgrade Wizard 

You upgrade your code to receive all of the benefits of Visual Basic .NET 2003. The Visual Basic .NET Upgrade Wizard, available in Visual Basic .NET 2003 Standard Edition, and higher, upgrades up to 95 percent of existing Visual Basic code and forms to Visual Basic .NET with new support for Web classes and User Controls. 

VISUAL STUDIO .NET

What Is Visual Studio      

[image: image1.png]




Visual Studio 

Visual Studio is a suite of applications created by Microsoft to give developers a compelling development environment for the Windows and .NET platforms. Visual Studio can be used to write console applications, Windows applications, Windows services, Windows Mobile applications, ASP.NET applications, and ASP.NET web services, in your choice of C++, C#, VB.NET, J#, and more. Visual Studio also includes various additional development tools, such as Visual SourceSafe; which tools are included depends greatly on the edition of Visual Studio that you are using. 

Microsoft has a long history with development tools (which you know if you have seen any of the TV movies or read any of the books on its history) and Visual Studio is the natural culmination of these efforts. For a number of years, Microsoft shipped individual development tools like Visual C++ and Visual Basic, but starting in 1997 they began offering Visual Studio, which combined all of these environments into one application. (The separate applications are still available for purchase, but are far less popular.)

There have been numerous versions of Visual Studio since its inception. Visual Studio 6 coincided with the release of Visual Basic 6; Visual Studio.NET 2002 was released along with the 1.0 version of the .NET framework, and was again revised with the 1.1 version of the .NET framework, at which point it was dubbed Visual Studio .NET 2003. The next version of Visual Studio, named Visual Studio 2005, is slated for release in November of this year and will coincide with the release of the 2.0 version of the .NET framework.

Capabilities

What can you really do with Visual Studio? Following are some of the various applications that can be built using Visual Studio.

· Console applications: These applications run from the command line and do not include a graphical interface, but are great for small tools or anything that will be run by another application. 

· Windows forms applications: These are Windows desktop applications written using the .NET framework; since they are .NET applications, they require that the .NET framework be on any computer that will run the application. 

· Windows services: Services are applications that run in the background while your computer is running. These are usually applications that will have to perform scheduled tasks or handle continuous network requests. 

· ASP.NET applications: ASP.NET is a powerful technology that is used to create dynamic web applications, often driven by a database. Many popular websites are written using ASP.NET, including those of e-commerce giants like Dell. 

· ASP.NET web services: ASP.NET provides a complete web services model that allows you to quickly and easily create web services. 

· Windows Mobile applications: Windows Mobile applications can run on devices that include the Compact framework; these include Pocket PC devices, as well as cell phones running the Microsoft Smartphone platform. 

· MFC/ATL/Win32 applications: You can also still create traditional MFC, ATL, or Win32 applications using C++. These applications do not need the .NET runtime to run, but also don’t include many of the benefits of working with the .NET framework. 

· Visual Studio add-ins: That’s right , you can use Visual Studio to write new functionality to be added into Visual Studio. 

· And more: Visual Studio also includes projects to deploy your application, work with databases, create reports, and more. 

Visual Studio provides an extensible model for adding new projects to Visual Studio; many other Microsoft applications now integrate directly into the IDE. Some of the most common include SQL Server Reporting Services and Visual Studio Tools for Office.

Features

All of the above applications could be written using another IDE or some combination of freely available SDKs and your favorite text editor, so why would you pay for Visual Studio? Visual Studio is dedicated to making your development life easier through time-saving and convenient features; here are some of the most compelling of those features.

· IntelliSense: IntelliSense is the trademark feature of Visual Studio. IntelliSense simply helps you while programming by showing you the available classes and the methods and properties available on those classes. Can’t remember what the name of that class, method, or property is? No worries, IntelliSense will help out. 

· Designers: Visual Studio includes visual WSYIWYG designers for Windows applications, ASP.NET applications, and Windows Mobile applications. These designers make it much easier to get your application looking just right. 

· Debugging: One of the most important features of Visual Studio is the ability to step through your application line by line as it is executing. Not sure why you are getting an error? Simply walk through and see exactly what is going wrong. 

· Organization: Visual Studio is built for developing applications, so it provides intuitive methods for organizing your various code files into projects and your various projects into solutions. 

.NET Framework

The Microsoft .NET Framework 1.1 provides the foundation for building connected and appealing applications, productively, on a wide variety of systems from the device to the data center. 

The Microsoft .NET Framework can be divided into two parts:
1. .NET Framework Class Library

2. CLR(Common Language Runtime)

Let us discuss these two parts in details:
1. .NET Framework Class Library: This include various fundamental class libraries, which include various predefined function which are very help full in programming.
2. CLR(Common Language Runtime): This include following features

>Common set of data types, variables and other services to various languages.

>The effective code of CLR is called managed code.

How We Work On .NET

Source code
↓

Microsoft intermediate language (MSIL)

↓

Just in time compilation (JIT)

↓

Native code (Platform Specific)

.NET My Services

It is a concept to store data over INTERNET to use later on “Any Time, Any Where” .It enables ubiquitous access to users. 

Scope of .NET

>MCPD (Microsoft certified professional developer) for web applications.
>MCTS (Microsoft certified technology specialist) trainers.

>MCAD (Microsoft certified application developers) windows applications designers.

[image: image2.png]




ASP.NET is a web application framework developed and marketed by Microsoft, that programmers can use to build dynamic web sites, web applications and web services. It was first released in January 2002 with version 1.0 of the .NET Framework, and is the successor to Microsoft’s Active Server Pages (ASP) technology. ASP.NET is built on the Common Language Runtime (CLR), allowing programmers to write ASP.NET code using any supported .NET language.
History
After the release of Internet Information Services 4.0 in 1997, Microsoft began researching possibilities for a new web application model that would solve common complaints about Active Server Pages, especially with regard to separation of presentation and content and being able to write “clean” code.Scott Guthrie Mark Anders, a manager on the IIS team, and , who had joined Microsoft in 1997 after graduating from Duke University, were tasked with determining what that model would look like. The initial design was developed over the course of two months by Anders and Guthrie, and Guthrie coded the initial prototypes during the Christmas holidays in 1997. 
The initial prototype was called “XSP”; Guthrie explained in a 2007 interview that, “People would always ask what the X stood for. At the time it really didn’t stand for anything. XML started with that; XSLT started with that. Everything cool seemed to start with an X, so that’s what we originally named it.”The initial development of XSP was done using Java, but it was soon decided to build the new platform on top of the Common Language Runtime (CLR) instead. Guthrie described this decision as a “huge risk”, as the success of their new web development platform would be tied to the success of the CLR, which, like XSP, was still in the early stages of development, so much so that the XSP team was the first team at Microsoft to target the CLR.

With the move to the Common Language Runtime, XSP was re-implemented in C# (known internally as “Project Cool” but kept secret from the public), and renamed to ASP+, as by this point the new platform was seen as being the successor to Active Server Pages, and the intention was to provide an easy migration path for ASP developers. 
Mark Anders first demonstrated ASP+ at the ASP Connections conference in Phoenix, Arizona on May 2, 2000. Demonstrations to the wide public and initial beta release of ASP+ (and the rest of the .NET Framework) came at the 2000 Professional Developers Conference on July 11, 2000 in Orlando, Florida. During Bill Gates’s keynote presentation, Fujitsu demonstrated ASP+ being used in conjunction with COBOL, and support for a variety of other languages was announced, including Microsoft’s new Visual Basic .NET and C# languages, as well as Python and Perl support by way of interoperability tools created by Active State. 
Once the “.NET” branding was decided on in the second half of 2000, it was decided to rename ASP+ to ASP.NET. Mark Anders explained on an appearance on The MSDN Show that year that, “The .NET initiative is really about a number of factors, it’s about delivering software as a service, it’s about XML and web services and really enhancing the Internet in terms of what it can do .... we really wanted to bring its name more in line with the rest of the platform pieces that make up the .NET framework. 
After four years of development, and a series of beta releases in 2000 and 2001, ASP.NET 1.0 was released on January 5, 2002 as part of version 1.0 of the .NET Framework. Even prior to the release, dozens of books had been written about ASP.NET, and Microsoft promoted it heavily as part of their platform for web services. Guthrie became the product unit manager for ASP.NET, and development continued apace, with version 1.1 being released on April 24, 2003 as a part of Windows Server 2003. This release focused on improving ASP.NET’s support for mobile devices.

Characteristics
Pages
ASP.NET pages, known officially as “web forms”, are the main building block for application development. Web forms are contained in files with an ASPX extension; in programming jargon, these files typically contain static (X)HTML markup, as well as markup defining server-side Web Controls and User Controls where the developers place all the required static and dynamic content for the web page. Additionally, dynamic code which runs on the server can be placed in a page within a block <% -- dynamic code -- %> which is similar to other web development technologies such as PHP, JSP, and ASP, but this practice is generally discouraged except for the purposes of data binding since it requires more calls when rendering the page.

Note that this sample uses code “inline”, as opposed to code behind.

<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)

    {

Label1.Text = DateTime.Now.ToLongDateString();

    }

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >

<head runat=”server”>

<title>Sample page</title>

</head>

<body>

<form id=”form1” runat=”server”>

<div>

<form method=”post” action=””>

<fieldset>

<legend>Contact Form</legend>

<label for=”name”>name: </label>

<input type=”text” id=”nome” name=”nome” /><br />

<label for=”surname”>surname: </label>

<input type=”text” id=”cognome” name=”cognome” /><br />

<label for=”email”>email: </label>

<input type=”text” id=”email” name=”email” /><br />

<label for=”password”>password: </label>

<input type=”password” id=”password” name=”password” /><br />

<label for=”message”>message: </label>

<textarea id=”message” name=”message” rows=”8” cols=”20”></textarea><br />

<input type=”submit” id=”go” value=”send” />

</fieldset>

</form>

<asp:Label runat=”server” id=”Label1” />

</div>

</form>

</body>

</html>

Code-behind model
It is recommended by Microsoft for dealing with dynamic program code to use the code-behind model, which places this code in a separate file or in a specially designated script tag. Code-behind files typically have names like MyPage.aspx.cs or MyPage.aspx.vb based on the ASPX file name (this practice is automatic in Microsoft Visual Studio and other IDEs). When using this style of programming, the developer writes code to respond to different events, like the page being loaded, or a control being clicked, rather than a procedural walk through the document.

ASP.NET’s code-behind model marks a departure from Classic ASP in that it encourages developers to build applications with separation of presentation and content in mind. In theory, this would allow a web designer, for example, to focus on the design markup with less potential for disturbing the programming code that drives it. This is similar to the separation of the controller from the view in model-view-controller frameworks.

Example
<%@ Page Language=”C#” CodeFile=”SampleCodeBehind.aspx.cs” Inherits=”Website.SampleCodeBehind” 

AutoEventWireup=”true” %>

The above tag is placed at the beginning of the ASPX file. The CodeFile property of the @ Page directive specifies the file (.cs or .vb) that will act as the code-behind while the Inherits property specifies the Class the Page derives from. In this example, the @ Page directive is included in SamplePage.aspx, then SampleCodeBehind.aspx.cs will act as the code-behind for this page:

using System;

namespace Website

{

public partial class SampleCodeBehind : System.Web.UI.Page

        {

protected override void Page_Load(EventArgs e)

                {

base.OnLoad(e);

                }

        }

}

In this case, the Page_Load() method will be called every time the ASPX page is requested. The programmer can implement event handlers at several stages of the page execution process to perform processing.

User controls
ASP.NET supports creating reusable components through the creation of User Controls. A User Control follows the same structure as a Web Form, except that such controls are derived from the System.Web.UI.UserControl class, and are stored in ASCX files. Like ASPX files, a ASCX contains static HTML or XHTML markup, as well as markup defining web control and other User Controls. The code-behind model can be used.

Programmers can add their own properties, methods, and event handlers. An event bubbling mechanism provides the ability to pass an event fired by a user control up to its containing page.

Rendering technique
ASP.NET uses a visited composites rendering technique. During compilation, the template (.aspx) file is compiled into initialization code which will build a control tree (the composite) representing the original template. Literal text goes into instances of the Literal control class, and server controls are represented by instances of a specific control class. The initialization code is combined with user-written code (usually by the assembly of multiple partial classes) and results in a class specific for the page. The page doubles as the root of the control tree.

Actual requests for the page are processed through a number of steps. First, during the initialization steps, an instance of the page class is created and the initialization code is executed. This produces the initial control tree which is now typically manipulated by the methods of the page in the following steps. As each node in the tree is a control represented as an instance of a class, the code may change the tree structure as well as manipulate the properties/methods of the individual nodes. Finally, during the rendering step a visitor is used to visit every node in the tree, asking each node to render itself using the methods of the visitor. The resulting HTML output is sent to the client.

After the request has been processed, the instance of the page class is discarded and with it the entire control tree.
State management
ASP.NET applications are hosted in a web server and are accessed over the stateless HTTP protocol. As such, if the application uses stateful interaction, it has to implement state management on its own. ASP.NET provides various functionality for state management in ASP.NET applications.

Application state
Application state is a collection of user-defined variables that are shared by all invocations of an ASP.NET application. These are set and initialized when the Application_OnStart event fires on the loading of the first instance of the applications and are available till the last instance exits. Application state variables are accessed using the Applications collection, which provides a wrapper for the application state variables. Application state variables are identified by names. 
Session state
Session state is a collection of user-defined session variables, which are persisted during a user session. These variables are unique to different instances of a user session, and are accessed using the Session collection. Session variables can be set to be automatically destroyed after a defined time of inactivity, even if the session does not end. At the client end, a user session is identified either by a cookie or by encoding the session ID in the URL itself.[11]
ASP.NET supports three modes of persistence for session variables: 
In Process Mode 

The session variables are maintained within the ASP.NET process. This is the fastest way, however, in this mode the variables are destroyed when the ASP.NET process is recycled or shut down. Since the application is recycled from time to time this mode is not recommended for critical applications. 

ASPState Mode 

In this mode, ASP.NET runs a separate Windows service that maintains the state variables. Because the state management happens outside the ASP.NET process, this has a negative impact on performance, but it allows multiple ASP.NET instances to share the same state server, thus allowing an ASP.NET application to be load-balanced and scaled out on multiple servers. Also, since the state management service runs independent of ASP.NET, variables can persist across ASP.NET process shutdowns. 

SqlServer Mode 

In this mode, the state variables are stored in a database server, accessible using SQL.Session variables can be persisted across ASP.NET process shutdowns in this mode as well. The main advantage of this mode is it would allow the application to balance load on a server cluster while sharing sessions between servers. 

View state
View state refers to the page-level state management mechanism, which is utilized by the HTML pages emitted by ASP.NET applications to maintain the state of the web form controls and widgets.The state of the controls are encoded and sent to the server at every form submission in a hidden field known as __VIEWSTATE. The server sends back the variable so that when the page is re-rendered, the controls render at their last state. At the server side, the application might change the viewstate, if the processing results in updating the state of any control. The states of individual controls are decoded at the server, and are available for use in ASP.NET pages using the ViewState collection.[12] [13]
Template engine
When first released, ASP.NET lacked a template engine. Because the .NET framework is object-oriented and allows for inheritance, many developers would define a new base class that inherits from “System.Web.UI.Page”, write methods here that render HTML, and then make the pages in their application inherit from this new class. While this allows for common elements to be reused across a site, it adds complexity and mixes source code with markup. Furthermore, this method can only be visually tested by running the application - not while designing it. Other developers have used include files and other tricks to avoid having to implement the same navigation and other elements in every page.

ASP.NET 2.0 introduced the concept of “master pages”, which allow for template-based page development. A web application can have one or more master pages, which can be nested.[14] Master templates have place-holder controls, called ContentPlaceHolders to denote where the dynamic content will go, as well as HTML and JavaScript that will be shared across child pages.

Child pages use those ContentPlaceHolder controls, which must be mapped to the place-holder of the master page that the content page is populating. The rest of the page is defined by the shared parts of the master page, much like a mail merge in a word processor. All markup and server controls in the content page must be placed within the ContentPlaceHolder control.

When a request is made for a content page, ASP.NET merges the output of the content page with the output of the master page, and sends the output to the user.

The master page remains fully accessible to the content page. This means that the content page may still manipulate headers, change title, configure caching etc. If the master page exposes public properties or methods (e.g. for setting copyright notices) the content page can use these as well.

Other files
Other file extensions associated with different versions of ASP.NET include:

	Extension
	Required version
	Description

	asax
	1.0
	Global.asax, used for application-level logic [15]

	ascx
	1.0
	Web UserControls: custom controls to be placed onto web pages.

	ashx
	1.0
	custom HTTP handlers.

	asmx
	1.0
	web service pages.

	axd
	1.0
	when enabled in web.config requesting trace.axd outputs application-level tracing. Also used for the special webresource.axd handler which allows control/component developers to package a component/control complete with images, script, css etc. for deployment in a single file (an ‘assembly’)

	browser
	2.0
	browser capabilities files stored in XML format; introduced in version 2.0. ASP.NET 2 includes many of these by default, to support common web browsers. These specify which browsers have which capabilities, so that ASP.NET 2 can automatically customize and optimize its output accordingly. Special .browser files are available for free download to handle, for instance, the W3C Validator, so that it properly shows standards-compliant pages as being standards-compliant. Replaces the harder-to-use BrowserCaps section that was in machine.config and could be overridden in web.config in ASP.NET 1.x.

	config
	1.0
	web.config is the only file in a specific Web application to use this extension by default (machine.config similarly affects the entire Web server and all applications on it), however ASP.NET provides facilities to create and consume other config files. These are stored in XML format.

	Cs/vb
	1.0
	Code files (cs indicates C#, vb indicates Visual Basic). Code behind files (see above) predominantly have the extension “.aspx.cs” or “.aspx.vb” for the two most common languages. Other code files (often containing common “library” classes) can also exist in the web folders with the cs/vb extension. In ASP.NET 2 these should be placed inside the App_Code folder where they are dynamically compiled and available to the whole application.

	dbml
	3.5
	LINQ to SQL data classes file

	master
	2.0
	master page file

	resx
	1.0
	resource files for internationalization and localization. Resource files can be global (e.g. messages) or “local” which means specific for a single aspx or ascx file.

	sitemap
	2.0
	sitemap configuration files

	skin
	2.0
	theme skin files.

	svc
	3.0
	Windows Communication Foundation service file


Directory structure
In general, the ASP.NET directory structure can be determined by the developer’s preferences. Apart from a few reserved directory names, the site can span any number of directories. The structure is typically reflected directly in the urls. Although ASP.NET provides means for intercepting the request at any point during processing, the developer is not forced to funnel requests through a central application or front controller.

The special directory names (from ASP.NET 2.0 on) are :
App_Browsers  

holds site-specific browser definition files. 

App_Code  

This is the “raw code” directory. The ASP.NET server will automatically compile files (and subdirectories) in this folder into an assembly which is accessible in the code of every page of the site. App_Code will typically be used for data access abstraction code, model code and business code. Also any site-specific http handlers and modules and web service implementation go in this directory. As an alternative to using App_Code the developer may opt to provide a separate assembly with precompiled code. 

App_Data  

default directory for databases, such as Access mdb files and SQL Server mdf files. This directory is usually the only one with write access for the application. 

App_LocalResources  

Contains localized resource files for individual pages of the site. E.g. a file called CheckOut.aspx.fr-FR.resx holds localized resources for the french version of the CheckOut.aspx page. When the UI culture is set to french, ASP.NET will automatically find and use this file for localization. 

App_GlobalResources  

Holds resx files with localized resources available to every page of the site. This is where the ASP.NET developer will typically store localized messages etc. which are used on more than one page. 

App_Themes  

holds alternative themes of the site. 

App_WebReferences  

holds discovery files and WSDL files for references to web services to be consumed in the site. 

Bin  

Contains compiled code (.dll files) for controls, components, or other code that you want to reference in your application. Any classes represented by code in the Bin folder are automatically referenced in your application. 

Performance
ASP.NET aims for performance benefits over other script-based technologies (including Classic ASP) by compiling the server-side code to one or more DLL files on the web server.[17] This compilation happens automatically the first time a page is requested (which means the developer need not perform a separate compilation step for pages). This feature provides the ease of development offered by scripting languages with the performance benefits of a compiled binary. However, the compilation might cause a noticeable delay to the web user when the newly-edited page is first requested from the web server.

The ASPX and other resource files are placed in a virtual host on an Internet Information Services server (or other compatible ASP.NET servers; see Other Implementations, below). The first time a client requests a page, the .NET framework parses and compiles the file(s) into a .NET assembly and sends the response; subsequent requests are served from the DLL files. By default ASP.NET will compile the entire site in batches of 1000 files upon first request. If the compilation delay is causing problems, the batch size or the compilation strategy may be tweaked.

Developers can also choose to pre-compile their code before deployment, eliminating the need for just-in-time compilation in a production environment.

Extension
Microsoft has released some extension frameworks that plug into ASP.NET and extend its functionality. Some of them are:

ASP.NET AJAX 

An extension with both client-side as well as server-side components for writing ASP.NET pages that incorporate AJAX functionality. 

ASP.NET MVC Framework 

An extension to author ASP.NET pages using the MVC architecture. 

ASP.NET compared to ASP classic
ASP.NET attempts to simplify developers’ transition from Windows application development to web development by offering the ability to build pages composed of controls similar to a Windows user interface. A web control, such as a button or label, functions in very much the same way as its Windows counterpart: code can assign its properties and respond to its events. Controls know how to render themselves: whereas Windows controls draw themselves to the screen, web controls produce segments of HTML and JavaScript which form part of the resulting page sent to the end-user’s browser.

ASP.NET encourages the programmer to develop applications using an event-driven GUI paradigm (event-driven GUI model), rather than in conventional web-scripting environments like ASP and PHP. The framework attempts to combine existing technologies such as JavaScript with internal components like “ViewState” to bring persistent (inter-request) state to the inherently stateless web environment.

Other differences compared to ASP classic are:

· Compiled code means applications run faster with more design-time errors trapped at the development stage. 

· Significantly improved run-time error handling, making use of exception handling using try-catch blocks. 

· Similar metaphors to Windows applications such as controls and events. 

· An extensive set of controls and class libraries allows the rapid building of applications, plus user-defined controls allow commonly used templates, such as menus. Layout of these controls on a page is easier because most of it can be done visually in most editors. 

· ASP.NET leverages the multi-language capabilities of the .NET CLR, allowing web pages to be coded in VB.NET, C#, J#, Delphi.NET, Chrome etc. 

· Ability to cache the whole page or just parts of it to improve performance. 

· Ability to use the code-behind development model to separate business logic from presentation. 

· If an ASP.NET application leaks memory, the ASP.NET runtime unloads the Application Domain hosting the erring application and reloads the application in a new Application Domain. 

· Session state in ASP.NET can be saved in a SQL Server database or in a separate process running on the same machine as the web server or on a different machine. That way session values are not lost when the web server is reset or the ASP.NET worker process is recycled. 

· Previous versions of ASP.NET (1.0 and 1.1) were criticized for their lack of standards compliance. The generated HTML and JavaScript sent to the client browser would not always validate against W3C/ECMA standards. In addition, the framework’s browser detection feature sometimes incorrectly identified web browsers other than Microsoft’s own Internet Explorer as “downlevel” and returned HTML/JavaScript to these clients with some of the features removed, or sometimes crippled or broken. However, in version 2.0, all controls generate valid HTML 4.0, XHTML 1.0 (the default) or XHTML 1.1 output, depending on the site configuration. Detection of standards-compliant web browsers is more robust and support for Cascading Style Sheets is more extensive. 

· Web Server Controls: these are controls introduced by ASP.NET for providing the UI for the web form. These controls are state managed controls and are WYSIWYG controls. 

Criticisms of ASP.NET
On IIS 6.0 and lower, pages written using different versions of the ASP framework can’t share Session State without the use of third-party libraries. This criticism does not apply to ASP.NET and ASP applications running side by side on IIS 7. With IIS 7, modules may be run in an integrated pipeline that allows modules written in any language to be executed for any request. 
ASP.NET 2.0 produces markup that passes W3C validation, but it is debatable as to whether this increases accessibility, one of the benefits of a semantic XHTML page + CSS representation. Several controls, such as the Login controls and the Wizard control, use HTML tables for layout by default. Microsoft has solved this problem by releasing the ASP.NET 2.0 CSS Control Adapters, a free add-on that produces compliant accessible XHTML+CSS markup.

Development tools
Several available software packages exist for developing ASP.NET applications:

· Delphi 2006 

· Macromedia Dreamweaver MX, Macromedia Dreamweaver MX 2004, or Macromedia Dreamweaver 8 (doesn’t support ASP.NET 2.0 features, and produces very inefficient code for ASP.NET 1.x: also, code generation and ASP.NET features support through version 8.0.1 was little if any changed from version MX: version 8.0.2 does add changes to improve security against SQL injection attacks) 

· Macromedia HomeSite 5.5 (For ASP Tags) 

· Microsoft Expression Web, part of the Microsoft Expression Studio application suite. 

· Microsoft SharePoint Designer 

· MonoDevelop (Free/Open Source) 

· SharpDevelop (Free/Open Source) 

· Visual Studio .NET (for ASP.NET 1.x) 

· Visual Web Developer 2005 Express Edition (free) or Visual Studio 2005 (for ASP.NET 2.0) 

· Visual Web Developer 2008 Express Edition (free) or Visual Studio 2008 (for ASP.NET 2.0/3.5)[19] 

Frameworks
It is not essential to use the standard webforms development model when developing with ASP.NET. Noteworthy frameworks designed for the platform include:

· Castle Monorail, an open-source MVC framework with an execution model similar to Ruby on Rails. The framework is commonly used with Castle ActiveRecord, an ORM layer built on NHibernate. 

· Spring.NET, a port of the Spring framework for Java. 

· Skaffold.NET, A simple framework for .NET applications, used in enterprise applications. 

	Date
	Version
	Remarks
	New features

	January 16, 2002
	1.0
	First version

released together with Visual Studio .NET
	· Object oriented web application development supporting Inheritance, Polymorphism and other standard OOP features 

· Developers are no longer forced to use Server.CreateObject(...), so early-binding and type safety are possible. 

· Based on Windows programming; the developer can make use of DLL class libraries and other features of the web server to build more robust applications that do more than simply rendering HTML ( i.e. exception handling ) 

	April 24, 2003
	1.1
	released together with Windows Server 2003
released together with Visual Studio .NET 2003
	· Mobile controls 

· Automatic input validation 

	November 7, 2005
	2.0
	codename Whidbey
released together with Visual Studio 2005 and Visual Web Developer Express
and SQL Server 2005
	· New data controls (GridView, FormView, DetailsView) 

· New technique for declarative data access (SqlDataSource, ObjectDataSource, XmlDataSource controls) 

· Navigation controls 

· Master pages 

· Login controls 

· Themes 

· Skins 

· Web parts 

· Personalization services 

· Full pre-compilation 

· New localization technique 

· Support for 64-bit processors 

· Provider class model 

	November 6, 2006
	3.0
	previously known as WinFX
released as an add-on to Visual Studio 2005
	· Windows Presentation Foundation (WPF) 

· Windows Communication Foundation (WCF) 

· Windows Workflow Foundation (WF) 

· Windows CardSpace 

	November 19, 2007
	3.5
	released together with Visual Studio 2008
	· New data controls (ListView, DataPager) 

· Integrated AJAX support 

· Improved support for nested master pages 

· Support for LINQ 


ASP.NET Extensions
· ASP.NET AJAX - Extension for AJAX enabled ASP.NET pages. 

· ASP.NET MVC Framework - Extension for building web applications using MVC architecture.. 

Alternatives to .NET and IIS
· Mono - An open source, cross platform implementation of CLR, including an alternative implementation of ASP.NET. 

· UltiDev Cassini Web Server - A free web server that can be redistributed with ASP.NET 1.1 and 2.0 applications. 

· Aprelium Abyss Web Server - A free lightweight web server that supports ASP.NET. Also available in a non-fre “professional edition”. 
